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Abstract. In 1995, Yudovich extended his own 1963 uniqueness result
for solutions to the 2D Euler equations with bounded initial vorticity
to allow a certain class of initial vorticities whose Lp-norms grow no
faster than roughly log p. Yudovich’s argument involves estimating part
of the difference between two velocities in terms of the L∞-norm of
each velocity. Because the two velocities have a (common) modulus of
continuity, however, the L∞-norm of the difference can be bounded by a
function of its L2-norm, which allows an improvement of this estimate.
We show that, though this does, indeed, improve the bound on the
difference at time t of the L2-norm of two solutions having different
initial vorticities, it nonetheless does not result in a larger uniqueness
class for solutions to the 2D Euler equations.
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We start by describing Yudovich’s class of initial velocities in [9] that admit
unique solutions to the Euler equations (this extended his bounded vorticity
result of [8]). We present Yudovich’s uniqueness argument, which is quite
short, and describe an obvious improvement. We then explain why this
improvement nonetheless does not lead to a larger class of initial velocities.

Let us be clear at the outset, lest there be any confusion, that this is a
negative result, which explains the somewhat counterintuitive fact that a
simple and obvious extension of a uniqueness argument of Yudovich (Theo-
rem 2.2) achieves, in the end, nothing. It does reflect a small bit of light on
the structure of Yudovich’s uniqueness class and concave Osgood moduli of
continuity, but it is fundamentally a negative result.
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1. Yudovich’s uniqueness argument for unbouned initial

vorticity

Let v be the velocity field and p the pressure field for an incompressible 2D
fluid. We can write the Euler equations in strong form as







∂tv + v · ∇v +∇p = f on [0, T ]× Ω,
div v = 0 on [0, T ]× Ω,

v = v0 on {0} × Ω.

Here, f is the external force, v0 the initial velocity, T > 0, and Ω ⊆ R
d,

d ≥ 2, the domain in which the fluid lies. When Ω is not all of R
d, we

impose the no-penetration boundary conditions, v ·n = 0 on ∂Ω, where n is
the outward unit normal to the boundary. The external force will play no
significant role in our argument, so we will assume it is zero.

The boundary also plays no significant role, and our arguments will work
whether Ω = R

2 or Ω is a bounded domain with C2-boundary. To simplify
the presentation we from now on assume that Ω = R

2.
Let σ be a stationary vector field, meaning that σ is of the form

σ =

(

−x2
r2

∫ r

0
ρg(ρ) dρ,

x1
r2

∫ r

0
ρg(ρ) dρ

)

(1.1)

for some g in C∞
C (R) with

∫

R2 g = 1. For any real number m, a vector
v belongs to Em if it is divergence-free and can be written in the form
v = mσ + v′, where v′ is in L2(R2). Em is an affine space; having fixed
the origin, mσ, in Em, we can define a norm by ‖mσ + v′‖Em

= ‖v′‖L2(Ω).

Convergence in Em is equivalent to convergence in the L2–norm to a vector
in Em.

For any ω in Lp(R2) compactly supported (again for simplicity), p > 2,
define K[ω] = K ∗ ω, where

K(x) =
1

2π

x⊥

|x|2
. (1.2)

(We define x⊥ = (−x2, x1).) Then K[ω] has vorticity ω and lies in the space,
Em, where

m =

∫

R2

ω.

We will use the definition of a weak solution to the Euler equations in
Definition 1.1.

Definition 1.1 (Weak Euler Solutions). Let v0 be an an initial velocity in
Em. We say that v in L∞(0, T ;Em) is a weak solution to the Euler equations
(without forcing) if v(0) = v0 and

(E)
d

dt

∫

Ω
v · ϕ+

∫

Ω
(v · ∇v) · ϕ = 0

for all divergence-free ϕ in (H1(R2))2.
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Suppose that ω is a scalar field lying in Lp for all p in [1,∞). Let

θ(p) = ‖ω‖Lp , α(ǫ) = ǫ−1θ(ǫ−1), (1.3)

and define

β(x) = inf
{

x1−ǫα(ǫ) : ǫ in (0, 1/2]
}

. (1.4)

A classical result of measure theory is that θ is smooth and p log θ(p) is
convex, so we add this as a requirement, losing no generality in the process.

As shown in Section 10 of [5], β is strictly increasing, concave, twice
continuously differentiable, and β(0) = 0. In particular, this means that β
is invertible.

Definition 1.2. We say that ω is a Yudovich vorticity if it is compactly
supported (this is not essential, but will simplify our presentation) that
satisfies the Osgood condition,

∫ 1

0

dx

β(x)
= ∞. (1.5)

Examples of Yudovich vorticities are

θ0(p) = 1, θ1(p) = log p, . . . , θm(p) = log p · log2 p · · · logm p, (1.6)

where logm is log composed with itself m times. These examples are de-
scribed in [9] (see also [2].) Roughly speaking, the Lp–norm of a Yudovich
vorticity can grow in p only slightly faster than log p. Such growth in the Lp–
norms arises, for example, from a point singularity of the type log log(1/ |x|).

We define the class, Y, of Yudovich velocities to be

Y = {K[ω] : ω is a Yudovich vorticity} .
A Yudovich velocity will always lie in a space, Em. Given θ as above, we
define the function space,

Yθ = {v ∈ Em : ‖ω(v)‖Lp ≤ Cθ(p) for all p in [1,∞)} (1.7)

for some constant C. We define the norm on Yθ to be

‖v‖Yθ
= ‖v‖Em

+ sup
p∈[p0,∞)

‖ω(v)‖Lp /θ(p). (1.8)

Definition 1.3 (Yudovich Solution). Let v0 be an an initial velocity in Y.
Then a weak solution, v, to the Euler equations is a Yudovich solution if, in
addition to the properties in Definition 1.1, ‖ω(v)(t)‖Lp ≤

∥

∥ω(v0)
∥

∥

Lp for all
p in [1,∞) and all t in R.

Definition 1.4. We say that a continuous function f : [0,∞) → [0,∞) with
f(0) = 0 is a modulus of continuity (MOC). When we say that a MOC, f ,
is Ck, k ≥ 0, we mean that it is continuous on [0,∞) and Ck on (0,∞).

A real-valued function or vector field, v, on a normed linear space, X, admits
f as a MOC if |v(x)− v(y)| ≤ f(‖x− y‖X) for all x, y in X.
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Proposition 1.5. Let v be any Yudovich solution to the Euler equations as
in Definition 1.3 with v0 in Yθ. Then v(t) lies in Yθ with ‖v(t)‖

Yθ
≤ ‖v0‖Yθ

for all t in R. Moreover, v(t) has an Osgood MOC independent of t in R

given (ignoring immaterial constants) by

µ(x) = inf
{

x1−2ǫα(ǫ) : ǫ in (0, 1/2]
}

=
1

x
β(x2). (1.9)

Proof. The uniform-in-time bound on ‖v(t)‖
Yθ

follows immediately from the
conservation over time of the Lp-norms of the vorticity. The MOC, µ, follows
from potential theory estimates applied to the Lp-norms of the vorticity;
that it is Osgood follows by a simple change of variables applied β(x2)/x.
The form of µ in (1.9) is an in [9], though expressed in a slightly different
manner. (Details of the potential theory estimates appear in Section 5.2 of
[3]. There is also a much simpler approach using Littlewood-Paley theory,
exploiting Bernstein’s inequality.) �

Theorem 1.6. Assume that ω0 lies in Y with ω0 compactly supported. Then
there exists a Yudovich solution to the Euler equations as in Definition 1.3
with the property that the vorticity is transported by the flow map and

‖ω(t)‖Lp = ‖ω0‖Lp for all p in [1,∞). (1.10)

The value of m in Definition 1.1 is
∫

R2 ω
0.

Proof. Existence of a solution, v, for any given fixed p in (1,∞] is classical
(see, for instance, Theorem 4.1 of [6].) That a solution exists for which
vorticity is transported by the flow can be proven by modifying the proof
of the same result for bounded vorticity in Section 8.2 of [7]. The only
significant change is the replacement of the log-Lipschitz MOC that holds
for bounded vorticity with the Osgood MOC given by (1.9), and hence the
use of Osgood’s lemma, Lemma 1.8, in place of Gronwall’s inequality. �

Theorem 1.7. If v0 is in Y then Yudovich solutions to the Euler equations
as in Definition 1.3, whose existence is assured by Theorem 1.6, are unique.

Proof. Suppose that v1 and v2 are two Yudovich solutions to the Euler equa-
tions with the same initial velocity, v0, in Yθ. Then a basic energy argument
gives

1

2

d

dt
‖v(t)‖2 ≤

∫

R2

|∇v2| |v|2 .

Letting M = ‖v‖L∞([0,T ]×R2), we have

1

2

d

dt
‖v(t)‖2 ≤

∫

R2

|∇v2| |v|2−2ǫM ǫ ≤ M ǫ ‖∇v2‖
L

1
ǫ
‖ |v|2−2ǫ ‖

L
1

1−ǫ

= M ǫ ‖∇v2‖
L

1
ǫ
‖v‖2(1−ǫ) ≤ M ǫ θ(ǫ)

ǫ
‖v‖2(1−ǫ).
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Letting L(t) = ‖v(t)‖2 and taking the infimum over ǫ in [1/2,∞) and inte-
grating in time gives

L(t) ≤ 2

∫ t

0
βM (L(s)) ds,

where

βM (x) = inf
{

M ǫx1−ǫα(ǫ) : ǫ in (0, 1/2]
}

= M inf

{

( x

M

)1−ǫ
α(ǫ) : ǫ in (0, 1/2]

}

= Mβ
( x

M

)

.

Since β is Osgood, so too is βM . It follows from Lemma 1.8 that L ≡ 0 so
that uniqueness holds. �

Using the approximation described in [9], the µ functions corresponding
to Yudovich’s example vorticities in (1.6) are

µk = Cx log(1/x)x log2(1/x) · logk+1(1/x), k = 0, 1, . . . ,

where logm is the logarithm iterated m times. Each corresponding β func-
tion, βk, lies in the same germ at the origin as µk, k = 0, 1, . . . , with the
dominant term being 2µk. There is no reason, however, to expect for β and
µ to lie in the same germ for an arbitrary Yudovich vorticity.

We used the following version of Osgood’s lemma above (see, for instance,
p. 92 of [1]).

Lemma 1.8 (Osgood’s lemma). Let L be a measurable nonnegative function
and f a nonnegative locally integrable function, each defined on the domain
[t0, t1]. Let µ : [0,∞) → [0,∞) be a continuous nondecreasing function, with
µ(0) = 0. Let a ≥ 0, and assume that for all t in [t0, t1],

L(t) ≤ a+

∫ t

t0

f(s)µ(L(s)) ds. (1.11)

If a > 0, then
∫ L(t)

a

ds

µ(s)
≤
∫ t

t0

f(s) ds.

If a = 0 and
∫

∞

0 ds/µ(s) = ∞, then L ≡ 0.

2. Extending Yudovich’s uniqueness class

In the proof of Theorem 1.7, above, we simply pulled out the L∞-norm of
u and used the fact that it is bounded uniformly over finite time. In fact,
though, because u is the difference between two vector fields, u1 and u2,
each having the same MOC, its L∞-norm can be bounded in terms of its
L2-norm. The idea, which is formalized in Lemma 2.1 (taken from Lemma
8.3 of [4]), is that if u1 and u2 differ at a point, they must differ significantly
in a ball around that point, for the rate at which the difference can drop to
zero as one moves away from the point is limited by the MOC of u1 and u2.
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Lemma 2.1. Let u1, u2 be two velocity fields on R
2 each having MOC µ.

Then

‖u1 − u2‖L∞ ≤ F (‖u1 − u2‖) ,
where (ignoring immaterial constants),

F (·) = (·µ−1(·))−1.

Observe that F (0) = 0 and that for u1, u2 Yudovich velocities—which
are in L∞—F is bounded.

To express F in a more convenient manner, let h(·) = ·µ−1(·) and δ =
F (x) = h−1(x). It follows that x = h(F (x)) = F (x)µ−1(F (x)) = δµ−(δ) so
that

µ
(x

δ

)

= δ.

But using (1.9) this becomes

µ
(x

δ

)

=
δ

x
β

(

x2

δ2

)

= δ =⇒ β

(

x2

F (x)2

)

= β

(

x2

δ2

)

= x

so that

F (x) =
x

√

β−1(x)
. (2.1)

To extend the space, Y, we start, as in the definition of Y, with θ, α, and
β as defined in (1.3, 1.4) along with µ as defined in (1.9), and define F as
in (2.1). We then define

γ(x) = inf
{

x1−ǫF (
√
x)2ǫα(ǫ) : ǫ in (0, 1/2]

}

and define the extended Yudovich space, Y′, to be all velocity fields corre-
sponding to compactly supported vorticities, ω, for which γ is Osgood. That
is, if ω has a corresponding γ that is Osgood, then K[ω] lies in Y

′. We then
define Y

′
θ in analogy with (1.7).

Because F is bounded, it is clear that Y ⊆ Y
′. But in fact, the two spaces

are identical, which is not immediately obvious. We show this in Section 3.
The obvious modification to the proof of Theorem 1.7 is quite simple, and

leads to Theorem 2.2.

Theorem 2.2. If v0 is in Y
′ then weak solutions having the properties in

Definition 1.3 are unique.

Proof. We argue as in the proof of Theorem 1.7, though we use Lemma 2.1
to bound ‖u‖L∞ . This leads to

1

2

d

dt
‖v(t)‖2 ≤ ‖∇v2‖

L
1
ǫ
‖v‖2(1−ǫ)M ǫ ≤ θ(ǫ)

ǫ
‖v‖2(1−ǫ)F (‖v‖)2ǫ,
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where M = ‖v‖L∞([0,T ]×R2). Letting L(t) = ‖v(t)‖2 and taking the infimum

over ǫ in [1/2,∞) and integrating in time gives

L(t) ≤ 2

∫ t

0
γ(L(s)) ds.

Since γ is Osgood, it follows from Lemma 1.8 that L ≡ 0 so that uniqueness
holds. �

3. The extension is no extension

We can simplify the expression for γ considerably. We have,

γ(x) = F (
√
x)2 inf

{

(

x

F (
√
x)2

)1−ǫ

α(ǫ) : ǫ in (0, 1/2]

}

= F (
√
x)2β

(

x

(F (
√
x)2

)

.

But from (2.1),

F (
√
x)2 =

( √
x

√

β−1(
√
x)

)2

=
x

β−1(
√
x)

so that

γ(x) =
x

β−1(
√
x)

β(β−1(
√
x)) =

x3/2

β−1(
√
x)

. (3.1)

Observe then that, by (3.1),
∫ 1

0

dx

γ(x)
=

∫ 1

0

β−1(
√
x)

x3/2
dx.

Making the change of variables, z = β−1(
√
x) so that x = β(z)2, dx =

2β(z)β′(z) dz, and noting that β−1(0) = 0, we have
∫ 1

0

dx

γ(x)
= 2

∫ β−1(1)

0

zβ(z)β′(z)

β(z)3
dz = 2

∫ β−1(1)

0

zβ′(z)

β(z)2
dz.

Thus, we have proved Proposition 3.1.

Proposition 3.1. The velocity field, u, lies in Y
′ if and only if

∫ 1

0

xβ′(x)

β(x)2
dx =

∫ 1

0

x(log β)′(x)

β(x)
dx = ∞.

Now suppose that that u lies in Y
′ \Y. Then it must be that

∫ 1

0

dx

β(x)
< ∞ while

∫ 1

0

x(log β)′(x)

β(x)
dx = ∞,

the first condition excluding membership of u in Y, the second including its
membership in Y

′ by Proposition 3.1.
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But by Proposition 10.2 of [5], 0 < x(log µ)′(x) ≤ 1 for all x > 0, so by
(1.9),

0 < x

[

log

(

1

x
β(x2)

)]′

= x
[

− log x+ (log β(x2))′
]

= x

[

−1

x
+ 2x(log β)′(x2)

]

= −1 + 2x2(log β)′(x2) ≤ 1.

It follows that
1

2
< x(log β)′(x) ≤ 1 (3.2)

so that
∫ 1

0

x(log β)′(x)

β(x)
dx ≤

∫ 1

0

dx

β(x)
< ∞. (3.3)

Hence, there can be no such velocity field in Y
′ \ Y, and we conclude that

Y
′ = Y.
Notice that (3.3) does not contradict γ(x) < µ(x) for all sufficiently small

x, as must be the case since F (0) = 0. This is because Proposition 3.1 was
in terms of β rather than µ and involved a change of variables in the integral
as well.

4. An explicit example

We suppose that we have a velocity field for which θ(p) = pa, a ≥ 1, noting
that p log θ(p) is, as we required, convex. Such a velocity field lies far outside
of Y in that the Lp-norms of its vorticity can grow as fast as any polynomial.
What is perhaps surprising is that the resulting functions, µ and β, are not
much larger (as these things go) than those corresponding to the examples
of Yudovich in (1.6), which are all close to −x log x. This illustrates just
how delicate selection for membership in Y can be.

As an example, suppose that θ(p) = pa, a ≥ 1, noting that p log θ(p) is,
as we required, convex. Then α(ǫ) = (1/ǫ)a/ǫ = ǫ−a−1, so

µ(x) = inf
{

x1−2ǫǫ−a−1 : ǫ in (0, 1/2]
}

.

Fixing x > 0, let f(x) = x1−2ǫǫ−a−1. Then

f ′(ǫ) = −x1−2ǫǫ−a−2 [2ǫ log x+ a+ 1] .

Noting that f(0+) = f(∞) = ∞, the infimum of f(ǫ) occurs when 2ǫ log x+
a+ 1 = 0; that is, when

ǫ = ǫ0 := − a+ 1

2 log x
.

Therefore, as long as x is small enough that ǫ0 ≤ 1/2,

µ(x) = x1−2ǫ0ǫ−a−1
0 .
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Since

x−2ǫ0 = e−2ǫ0 log x = ea+1,

we can write

µ(x) = ea+1x

[

−2 log x

a+ 1

]a+1

,

which we note is not Osgood since a ≥ 1.
Using (1.9), both µ(x) and β(x) are constant multiples of (− log x)a+1x.

Ignoring immaterial constants, then,

(log β)′(x) = (log x+ (a+ 1) log(− log x))′ =
1

x
+

a+ 1

x log x
so

∫ 1

0

x(log β)′(x)

β(x)
dx =

∫ 1

0

1 + (a+ 1)/ log x

x(− log x)a+1
dx

=

∫ 1

0

1

x(− log x)a+1
dx− (a+ 1)

∫ 1

0

1

x(− log x)a+2
dx < ∞.

Therefore, since also
∫ 1
0 (β(x))

−1 dx < ∞, the velocity field lies neither in
Y nor in Y

′.
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